

INSTRUCCIONES DE KIT DE REACTIVOS DE ASPARTATO AMINOTRANSFERASA (MÉTODO IFCC)

◆Nombre del producto

KIT DE REACTIVOS DE ASPARTATO AMINOTRANSFERASA (MÉTODO IFCC)

◆Uso previsto

Este reactivo se aplica a la medición cuantitativa in vitro de la actividad del aspartato aminotransferasa (AST) en suero o plasma humano.

AST está ampliamente distribuido en el cuerpo humano. Tiene una mayor concentración en corazón, hígado, músculo esquelético, riñón y eritrocitos. La lesión o enfermedad de estas organizaciones, como el infarto de miocardio, la hepatitis viral, la necrosis hepática, la cirrosis y la embolia por distrofia muscular, pueden causar niveles elevados de AST en suero o plasma.

◆Principio

El principio de prueba de este reactivo se basa en el método recomendado por la Federación Internacional de Principios de Química Clínica (IFCC).

El aspartato aminotransferasa (AST) en la muestra cataliza L-aspartato amino-, convertido en α -cetoglutarato para generar oxaloacetato y L-glutamato. El oxaloacetato se reduce por la malato deshidrogenasa en el reactivo a ácido L-málico. Mientras tanto, NADH se oxida a NAD +, por lo que el valor de absorbancia de luz a 340nm disminuirá. Al monitorear la tasa de disminución del valor de absorbancia a 340 nm, se puede medir la actividad de la aspartato aminotransferasa (AST). La interferencia del piruvato endógeno se puede eliminar rápida y completamente durante el tiempo de retraso.

L- Ácido aspártico + ácido α-cetoglutárico Acido aspártico + Acido α-cetoglutárico Ácido aidoxaloacético + NADH+ H+ MDH L- malic acid + NAD+

Composición del reactivo

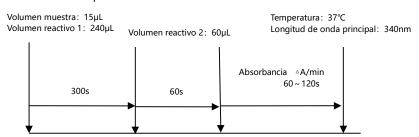
Cada componente en diferentes kits de lote no se puede cambiar.

Reactivo I		Reactivo 2	
Lactato deshidrogenasa	≥1365 U/L	Malato deshidrogenasa	≥1635 U/L
L- aspartato	300 mmol/L	α-cetoglutarato	36 mmol/L
Búfer TRIS	≥80 mmol/L	NADH	≥0.75mmol/L
EDTA	5.0 mmol/L	Búfer TRIS	≥80 mmol/L
		EDTA	5.0 mmol/L

- ◆Condiciones de almacenamiento v vida útil
- 1. El reactivo debe mantenerse a una temperatura de 2 ° C ~ 8 ° C y sellarse en lugar seco sin luz solar. La vida útil es de 18 meses.
- 2. En condiciones de 2 ° C ~ 8 ° C, la estabilidad del vial abierto es de 30 días.
- ◆Dispositivo adecuado

Cualquier tipo de analizadores semiautomáticos y automáticos; todo tipo de parámetros de los analizadores de química se preparan para referencia.

- ◆Requisitos de muestra
- 1. La muestra debe ser sérica o plasmática.
- 2. La muestra de suero o plasma no debe ser hemolítica ni contaminada. La muestra plasmática debe adoptar heparina o anticoagulante EDTA.
- 3. La muestra es estable durante 7 días a $2 \sim 8$ ° C. Es estable durante 1 día a temperatura ambiente.


Método

1. Preparación del reactivo: R1 y R2 son reactivos líquidos, que se pueden usar directamente después de abrirlos.

2. Condición de prueba (parámetros)

Temperatura	37℃	Volumen reactive 1	240µL
Longitud de onda principal	340nm	Volumen reactive 2	60µL
Modo de prueba	Ensayo de tasa	Volumen de muestra	15µL
Ruta óptica	1.0cm	Tiempo de reacción	60~120s
Rango de absorbancia	0 ~ 2A	Tiempo de retardo	60s

3. Procedimiento de prueba

4. Calibración

Se sugiere utilizar un calibrador suplementario según las instrucciones. Cuando se cambie el número de lote o el control de calidad no sea válido, la calibración se realizará de nuevo.

5. Control de calidad

Se sugiere utilizar productos de control de calidad producidos por Dirui. El laboratorio establecerá su propia zona y límite de control de calidad. Si el valor de control de calidad está fuera de control, se tomarán medidas de corrección.

6. Cálculo:

	Tubo muestra △A/min	
Concentración de muestra (U/L) =	Tubo calibrador △A/min	 × Concentración calibrador (U/L)

◆Rango de referencia

8U / L ~ 40U / L

El nivel de bebé es aproximadamente el doble de adulto. Disminuirá a nivel adulto después de 6 meses. El rango de referencia aplicado es el valor esperado para este método, que es sólo para referencia. Se recomienda que todos los laboratorios realicen pruebas pertinentes para validar dicho rango o establecer

sus propios rangos de referencia.

- ◆Explicación de los resultados
- 1. Cuando △A/min>0. 26A, vuelva a probar después de diluirlo (1: 9) con NaCl al 0,9% o agua destilada, y multiplique los tiempos de dilución (10) para calcular el resultado.
- 2. La medición del contenido de AST es solo uno de los indicadores del diagnóstico clínico para los pacientes, y los médicos también realizan un diagnóstico integral que incluye el cuerpo, el diagnóstico de la historia, así como otros elementos y métodos de diagnóstico.
- 3. LDH contenida en el reactivo puede eliminar la interferencia del piruvato endógeno rápidamente al comienzo de la incubación a una velocidad de hasta 1 mmol / L (nivel sérico normal de piruvato $0.034 \sim 0.102$ mmol / L).

◆Límite

1. La precisión de los resultados se basa en el control de la calibración, la temperatura de prueba y el

tiempo.

- 2. Cuando la ictericia es>1368µmol/L, el ácido ascórbico es>5.7mmol/L, la hemoglobina es>10g/L, el triglicérido es>28.2mmol/L, el resultado de la prueba puede verse afectado.
- Especificaciones
- 1. Linealidad: hasta 1000U/L
- 2. Absorbancia en blanco: A≥1.100

Velocidad de absorbancia en blanco | △A—/5min≤0.010。

- 3. El límite mínimo de prueba: pruebe la solución salina normal 20 veces repetidamente, y el límite mínimo de prueba se determina como 3.0U / L por promedio +2 veces SD.
- 4. Precisión: pruebe dos muestras con diferente concentración en el mismo sistema de prueba dentro de los 20 días hábiles.

Suara OC	Precisión del m	nismo número	de lote n=20	Precisión entre días n=20			
Suero QC $\overline{\overline{X}}$ (U/L)		SD	CV%	$\overline{\mathrm{X}}$ (U/L)	SD	CV%	
Muestra 1	34.0	0.82	2.41	24.6	0.92	2.73	
Muestra 2	156.9	2.16	1.38	162.4	3.23	1.99	

- 5.Comparación metodológica: Realizar pruebas sobre 200 muestras con reactivo y de la empresa y el reactivo en el mercado x, la relevancia entre nuestro reactivo (y) y el reactivo de mercado aprobado (x) es: y=1.0617x-0.0415,r=0.999.
- ◆Trazabilidad de estandarización
- El valor constante del calibrador se puede rastrear hasta la referencia internacional ERM-AD457.
- ◆Los asuntos necesitan atención
- 1. Precauciones para la operación
- 1.1 El producto es solo para diagnóstico in vitro.
- 1.2 No agregue reactivo durante la prueba. Evite la luz solar directa durante la prueba.
- 1.3 El volumen del reactivo y la muestra se pueden cambiar proporcionalmente de acuerdo con los requisitos del instrumento.
- 1.4 La muestra de hiperlipidemia o ictericia tiene un valor de absorbancia más alto a 340nm. El AST más alto de estas muestras agota la sustancia básica y sigue siendo un valor de absorbancia más alto a 340 nm, las muestras deben diluirse antes de la prueba.
- 1.5 El reactivo no se puede utilizar si es turbio o el valor de absorbancia en blanco de agua a 340 nm es inferior a 1.100A.
- 1.6 La conversión unitaria de μ kat/L: U/L × 16.67 × 10-3 = μ kat/L.
- 2. Precauciones para la seguridad
- 2.1 Considere el producto como materiales peligrosos que pueden causar VIH, VHB, VHC y otras infecciones. Para evitar el riesgo, use guantes de un solo uso.
- 2.2 Evite el contacto con la piel, la ropa y los ojos. Una vez en contacto con la piel o la ropa, enjuague la parte de contacto con abundante aqua y vaya a ver a un médico.
- 2.3 Las muestras y los residuos líquidos tienen un riesgo infeccioso potencial, y el usuario debe gestionarlos de acuerdo con la norma de operación de seguridad del laboratorio, las leyes y regulaciones locales.
- ◆Referencia
- 1. Joven DS. Efectos de los medicamentos en las pruebas de laboratorio clínico. Tercera edición. 1990; 3:45~52.

- 2. Wallnöfer H,Schmidt E,Schmidt F W(ed). Sinopsis Leberkrankheiten. Stuttgart: Georg Thieme Verlag, 1974.
- 3. Thefeld W, et al. Dtsch med Wschr, 1974; 99:343.
- 4. NCCLS. Pruebas de Interferencia en Química Clínica; Directriz aprobada, 2005.
- ◆Fecha de aprobación y revisión: 07/2022

◆Especificación de embalaje

No.	Especificaciones		Tipo
232010202006	8 R1: 4×50mL R2: 1×50mL		Dirui CS-400/600/800/1200/1300/1600/6400
232010202002	R1: 4×80mL R2: 4×20mL		Dirui CS-240/300
232010202011	R1: 2×60mL R2: 2×15mL		Dirui CS-T Serie
232010202012	R1: 4×40mL	R2: 4×10mL	Dirui CS-T Serie
232010202015	R1: 4×150mL R2: 1×150mL		Dirui CS-1600/6400

◆P.S.: Parámetros del analizador de química automatizada de la serie CS

Modelo	CS-24 0	CS-300	CS-400	CS-600	CS-1200	T240	T300	CS-6400	CS-1600	CS-130
ítem	AST	AST	AST	AST	AST	AST	AST	AST	AST	AST
Unidad	U/L	U/L	U/L	U/L	U/L	U/L	U/L	U/L	U/L	U/L
Metodología	Tasa A	Tasa A	Tasa A	Tasa A	Tasa A	Tasa A	Tasa A	Tasa A	Tasa A	Tasa A
Tiempo	20	20	10	10	10	13	10	9	12	9
Punto fotométrico	21~31	21~31	21~31	23~38	21~34	28~43	28~47	19~31	19~31	21~34
Longitud de onda principal	340	340	340	340	340	340	340	340	340	340
Sub-longitud de onda	405	405	405	405	405	405	405	405	405	405
Reactivo R1/T1	240	240	240	240	240	240	240	240	240	240
R2/T2	60	60	0	60	0	60	60	60	60	0
R3/T3			60		60					60
R4/T4			0		0					0
Volumen normal de la muestra de suero	15	15	15	15	15	15	15	15	15	15
Límite de absorbancia	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Tipo de reacción	Reacció n negativa	Reacción negativa	Reacció negativ							
Comprobació n de Prozone	-3.3 límite inferio r	-3.3 límite inferior	-3.3 límite inferio							
Método de calibración	Linealid ad de 2 puntos	Linealidad de 2 puntos	Linealidad de 2 puntos	Linealidad de 2 puntos	Linealidad de 2 puntos	Linealidad de 2 puntos	Linealidad de 2 puntos	Linealidad de 2 puntos	Linealidad de 2 puntos	Linealid de 2 punto
Comprobació n de deflexión	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
Comprobació n de discreción	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Comprobació n de sensibilidad	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04

Marca horizontal en blanco	-3.3~3 .3	-3.3~3.3	-3.3~3.3	-3.3~3.3	-3.3~3.3	-3.3~3.3	-3.3~3.3	-3.3~3.3	-3.3~3.3	-3.3~3.3
Rango de linealidad	3~100 0	3~1000	3~1000	3~1000	3~1000	3~1000	3~1000	3~1000	3~1000	3~1000

DIRUI INDUSTRIAL CO., LTD.
95 Yunhe Street, New & High Tech.
Development Zone
Changchun, Jilin 130012 P.R. China
Tel:+86(431)85100409
Fax:+86(431)85172581

E-mail:dirui@dirui.com.cn http://www.dirui.com.cn

C € EC REP

EMERGO EUROPE Prinsessegracht 20 2514 AP The Hague The Netherlands